Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(5): e202301959, 2024 May.
Article in English | MEDLINE | ID: mdl-38469951

ABSTRACT

This study aimed to explore the potential protective impacts of Moringa oleifera extract on major alteration in salivary glands of rats exposed to sodium valproate (VA). Groups were defined as control, control+moringa extract, sodium valproate, and sodium valproate+moringa extract. Antioxidant and oxidant status, activities of digestive and metabolic enzymes were examined. VA treatment led to various biochemical changes in the salivary glands, including decreased levels of antioxidants like glutathione, glutathione-S-transferase, and superoxide dismutase (except for sublingual superoxide dismutase). Conversely, a decrease in alpha-amylase, alkaline and acid phosphatase, lactate dehydrogenase, protease, and maltase activities were observed. The study also demonstrated that VA induces oxidative stress, increases lipid peroxidation, sialic acid, and nitric oxide levels in the salivary glands. Total oxidant capacity was raised in all glands except in the sublingual gland. The electrophoretic patterns of proteins were similar. Moringa oleifera extract exhibited protective properties, reversing these VA-induced biochemical changes due to its antioxidant and therapeutic attributes. This research suggests that moringa extract might serve as an alternative treatment approach for individuals using VA and experiencing salivary gland issues, although further research is necessary to confirm these findings in human subjects.


Subject(s)
Antioxidants , Moringa oleifera , Plant Extracts , Salivary Glands , Valproic Acid , Moringa oleifera/chemistry , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Rats , Salivary Glands/drug effects , Salivary Glands/metabolism , Valproic Acid/pharmacology , Antioxidants/pharmacology , Antioxidants/chemistry , Male , Oxidative Stress/drug effects , Rats, Wistar , Lipid Peroxidation/drug effects
2.
Drug Chem Toxicol ; 46(6): 1212-1222, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36373188

ABSTRACT

Valproic acid (VPA) is a drug used for the treatment of epilepsy worldwide. Depending on usage, it can cause complications such as coagulopathies, hepatotoxicity, and encephalopathy. Moringa oleifera has been shown to have antitumor, anti-inflammatory, antiulcer, antispasmodic, diuretic, antihypertensive, antidiabetic, and hepatoprotective activities. The current study investigated the effects of Moringa leaves extract (70% ethanol) on antioxidant systems against valproate-induced oxidative damage in muscle tissues of rats. Female Sprague Dawley rats were randomly divided into four groups. Group I: control group; Group II: animals given only Moringa extract; Group III: animals that received only sodium valproate; Group IV: animals administered with sodium valproate + Moringa extract. Moringa extract and sodium valproate were administered orally. Muscle tissues were collected after sacrificing the animals. Biochemical analysis of muscle tissue homogenates of the valproate group revealed elevated levels/activities of lipid peroxidation, aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, catalase, glutathione reductase, glutathione-S-transferase, reactive oxygen species, total oxidant status, oxidative stress index, glucose-6-phosphate dehydrogenase, sialic acid, protein carbonyl, nitric oxide, and myeloperoxidase. While glutathione, superoxide dismutase, glutathione peroxidase, total antioxidant status, aryl esterase and sodium/potassium ATPase were decreased. The administration of Moringa extract reversed these biochemical changes. These results indicate that Moringa leaves extract had a protective effect on muscle tissues against valproate-induced damage.


Subject(s)
Antioxidants , Moringa oleifera , Rats , Female , Animals , Antioxidants/metabolism , Valproic Acid/toxicity , Valproic Acid/metabolism , Plant Extracts , Rats, Sprague-Dawley , Oxidative Stress , Glutathione/metabolism , Muscles/metabolism , Plant Leaves , Liver
3.
J Food Biochem ; 45(1): e13590, 2021 01.
Article in English | MEDLINE | ID: mdl-33346923

ABSTRACT

Diabetes is a metabolic disorder whose complications are among the leading cause of death. In this study, the antidiabetic effect of L-alanine was tested in alloxan-induced diabetic rats. Thirty-five male albino Wistar rats were divided into five groups viz; Group I and II: nondiabetic and diabetic controls respectively; Group III and IV: 150 and 300 mg/kg b.w. L-alanine treated, respectively; Group V: glibenclamide (0.5 mg/kg b.w.) treated. Weight and blood glucose were monitored during the study, while liver and kidney functions, lipid profile, and antioxidant markers were examined at the end of the study. The outcomes indicate that 300 mg/kg L-alanine resulted to a significant decrease (p < .05) in weight and blood glucose. L-alanine restored tissue antioxidants, kidney, and liver functions by improving important parameters. Histopathological studies showed the potential of L-alanine in regeneration of the islets of Langerhans. These findings suggest that L-alanine has an alleviating effect on alloxan-induced diabetes. PRACTICAL APPLICATIONS: Several medicinal plants have been tested for their antidiabetic potentials, however, the isolation of the active compounds from these plants for medicinal use is often challenging. Here, we present data that suggests the potential use of a pure and harmless amino acid compound (L-alanine) for the management of diabetes. L-alanine is readily available, cheap and can also be found in many foods we eat. Therefore, L-alanine may be taken by diabetic patients as a food supplement for the treatment/management of diabetes or taken as part of foods rich in the amino acid such as meat, poultry, fish, eggs, and dairy products.


Subject(s)
Alloxan , Diabetes Mellitus, Experimental , Alanine/pharmacology , Alanine/therapeutic use , Animals , Blood Glucose , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/drug therapy , Dietary Supplements , Humans , Male , Plant Extracts , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...